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ABSTRACT

We analyze the convergence of the spectral vanishing method for both the

spectral and pseudospectral discretizations of the inviscid Burgers, equa-

tion. We prove that this kind of vanishing viscosity is responsible for a

spectral decay of those Fourier coefficients located toward the end of the

computed spectrum; consequently, the discretization error is shown to be spec-

trally small independent of whether the underlying solution is smooth or

not. This in turn implies that the numerical solution remains uniformly

hounded and convergence follows by compensated compactness arguments.
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INTRODUCTION

In this paper, we extend the analysis of the spectral vanishing viscosity

method for stabilizing spectral approximations of nonlinear conservation

laws. The spectral vanishing viscosity has been first introduced in [31,

where it was shown that L -bounded spectral-Galerkin approximations converge

2
strongly in L (xt) to the exact entropy solutions of such conservation

Sloc

laws.

The analysis is performed on the 2m-periodic inviscid Burgers' equation

(u (x t))

(.) u(xt) + ax 2 0

submitted to the additional entropy condition

(1.2) 2 t)) + -t < 0,
at 2 ax

which singles out the unique "physically relevant" weak solution of (1.1).

Both the spectral-Galerkin and pseudospectral-collocation methods for (1.1),

(1.2) are treated, and to this end we proceed as follows.

Denote by SNu(xt) the spectral-Fourier projection of u(x,t),

(1.3) S u(x,t) = u(k,t)e i kx , u(k,t) ___ f u(x,t)e dx,

1k < N 0

and let TNu(x,t) denote the pseudospectral-Fourier projection of u(x,t),

which intprpolate u(x,t) at the 2N+l equidistant collocation points

2wx v vh, h - 2N+I v = , . 2N
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ikx h 2N -ikx V

(1.4) INU(X,t) u(k,t)e k  (k,t) - u(x,t)e
fk( < N v=O

These two projection operators differ by aliasing error--that is, we have

(1.5) IN  SN + AN

where the aliasing projection AN is given by [21

(1.6) ANu(x,t) = I [ " u(k + j(2N + 1), t)]eikx .

Ik <N j*O

Throughout this paper, we use

(1.7) PN = SN + a'AN

as a concise notation for the two kinds of Fourier projections: either with

a = 0, corresponding to the spectral projection, or with a = I which corre-

sponds to the pseudospectral interpolation.

We approximate the Fourier projection of the exact solution PNu(xt), by

" an N-trigonometric polynomial, UN(x,t)

.) UN (X,t) 
=  kJ 

N  Uk(t)eikx

which is determined by the approximate evolution equation

a a a(1.9) -t (xt) + (PN - UN (x,t)) = (Q U (x,t)).
uNN2Nax Nax uN(xt)

0 ._ , " , ..-- ---.- . .--- -, . .-. - , .-• t . . .- L -.-l u , W. , , . - - , , , -.-, -.- ... -%
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The expression on the right-hand side of (1.9) represents the spectral vanish-

ing viscosity term. Here QN is the spectral viscosity operator which is

defined as a convolution with a symmetric viscosity kernel QN(x),

aaikx(1.10) QN - U N(X,t) = Q ( ) k

N ax N = QN( x U N(X,t), QN(x) = k Q(k)e

In the spectral case where a = 0, (1.9) amounts to

a u(xt) + - [SN 2 UN(x,t)] = C a [0(x)* - uN(x,t)l,

consisting of a nonlinear system of ordinary differential equations for the

Fourier coefficients, uk(t), which are coupled through the standard spectral

convolution treatment of the nonlinear term. The interpretation of the scheme

(1.9) in the pseudospectral case where a = I leads us to

' UN(xt) + a-[IN I u (xt)] x=x = I[QN(x)* -- UN(Xt)] Ixx 0 v 2N,
7 tNV __ 2NXXV 7xN lxV

and consists in a complete statement of a standard collocation method with a

pseudospectral treatment of the nonlinear term.

In both the spectral and pseudospectral cases, the spectral viscosity

operator can be efficiently implemented in the Fourier rather than the physi-

cal space, i.e.,

a a a a . 2 ikx
a N -ax uN(x,t)) = C - [QN(x) * x UN(x,t)] = -C. k Q(k)uk(t)e

.. k.<N

An essential ingredient of our spectral viscosity operator, QN' is that it4

.4.

*
r 'I
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should operate only on the high portion of the spectrum, In order to retain

the formal spectral accuracy of the method. Hence we make

ASSUMPTION 1: There exists a constant m =-m(N) < N, such that

0 Q (k) < 1, m < !k! < 2m,

- Q(k) =-1, 2,m < 1kj < N.

Then, with QN I Rm, we can rewrite (1.9) as

u2aa
(11u at uNxt) + -(P N N(x,t)) e 2-[( Rm auxtl

where the corresponding kernel Rm(x),

(112 R(x) = lk <2m R(k)ei,

is a trigonometric polynomial of degree < 2m, with Fourier coefficients

* i(k) E 1, 1kl <(m
(1.13)1

'0 < R(k) < 1, M < I k! 2m.

In order to guarantee the uniform boundedness of our approximation, uN(x,t),

we shall need to control the size of this kernel; we therefore make

N ,I''' I

StM 7* 6
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ASSUMPTION II: There exists a constant such that

-4'

(1.14) IIR(-)IUL1 < Const.logm.

L (x)

We remark that the assumption of a logarithmic upper bound for the size of

Rm(x) is plausible, since typical applications involve R(k) which de-

crease monotonically to zero and (1.14) is automatically fulfilled in such

cases; consult Appendix A. To obtain, with the help of Assumption II, the

-A promised uniform bound on UN(x,t), necessitates L -bounded initial data,

uN(xO). For technical reasons we shall need the slightly stronger

ASSUMPTION III: There exists a constant such that

u.N(x".0) L (x) - Ik .<N -

The spectral viscosity term on the right of (1.11) depends on two free

parameters: the viscosity amplitude e H e(N) and the effective size of

V the inviscid spectrum m - m(N). These two parameters should be chosen to en-

sure the convergence of the method. In [3] it has been proved that in the ab-

sence of such viscosity term, e = 0, strong as well as weak convergence to

the exact entropy solution fails.

-- The main result of this paper asserts

~Theorem 1.1: Consider the Fourier approximation (1.11) of either "

spectral or pseudospectral type. Let the spectral viscosity in (1.12) Tti

(1.14) be parameterized with (E,m) as follows

0e .
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(1.15) E - e(m) - a 2 , m = m(N) - Const.N 0 < a < .
m .11K ( ) 1 1

Then UN(X,t) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

Let us examine for example the viscosity operator QN = I - Sm .  Here

Rm(x) coincides with Dirichlet kernel Dm (x), where [5, Chapter II]

V., ikx _ 1sin(m +-x 4
Di(x)= e i I 1ID (.) l  -- logm,m TFm 1 -lkm sin- x L (x) 7T

so that Assumption 11 is fulfilled and Theorem 1.1 yields

Corollary 1.2: Consider the Fourier approximation

(1.16) a + 2(xt) +1 2 (x,t)) = S [(I - Si) UN(x,t)]at Ni 16) -N 2 ( N TX - a-x N

with
V

(1.17) E = s(N) - Const- lN m = m(N) Const.Na 0 < <

Then uN(xt) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

The spectral portion of this result (a = 0), was derived in [3, Theorem

4.11 under the assumption that the numerical solution uN(xt) remains uni-

formly bounded. The extension of Corollary 1.2 includes the pseudospectral

St4. .. .. 4'-N< """" "-" ;." . ._"q"r c' , ,.. . '---- .:.
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approximation (a = 1), and in addition, thanks to the slightly more stringent

parametrization than that of [3, Theorem 4.1], contains a proof of the previ-

ously assumed L -bound.

In the last example the viscosity symbols Q(k) were discontinuous

at Ikj = m. It was suggested in [31 that the use of viscosity operators

ON with smoothly varying symbols would be advantageous for the spectral vis-

cosity method in (1.9). As our second and final example we consider the

simplest viscosity operator of this type, namely

* Q(k) 0, kI < m,

Q(k) - m m < kl < 2m,

'0(k) 1 , 2m < Ik < N.

This kind of spectral viscosity is intimately related to the Fejer operator
m-I

F = 7 Sk: if we let Km(x) denote the corresponding Fejer kernel [3,
k=0

Chapter III]

k!)ikx sin mx 2
?',k K x i -) i k x  "2" IlL

. (x) e 1 K (-)1 =1,M ' m

m Ik5.K me sin -x L (x)

then for 0= I - R we have Rm(x) = 2 K2m(x) Km(x) Hence the kernel

associated with
R=2F -F 2m-1

*m m m k=m

- is Ll-uniformly bounded,

11 R (.) 1 < 211K - 11 1 + <K (-)11 < 3,Sm 1 - K2m( 1 m L1 (×
L (x) L(x) L(x)

S-

A N.
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so that Assumption II is fulfilled and Theorem 1.1 yields

-. Corollary 1.3: Consider the Fourier approximation

1 2m-1

a UXt) + -a-x (PN7 u N(x,t)) = ax [(I - - S (X,t ) ]

(1 u N m k=m k x

with

rN (1.19) e E(N) Const.N m m(N) Const.N8  0 < 8 < 2

0
Then ~~~convegst.oN 28  a t h

-. -. Then uN(xt) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

-_.

The paper is organized as follows. In Section 2 we derive a couple of

4., basic L2-type a'priori energy estimates. In Section 3, these estimates are. P.

used in order to study the spectral decay rate of the Fourier coefficients.

This in turn enables us, in Section 4, to obtain L' a priori estimate on

the numerical solution. Finally, based on the a priori estimates prepared in

*Sections 2, 3, and 4, Theorem 1.1 is proved in Section 5 along the lines of

using compensated compactness arguments.

2. L2-TYPE A PRIORI ESTIMATES

We consider the approximate Fourier method (1.9) which we rewrite as

, 1 UN2)P ) 1 u2 ] a a T

(2.1) a uN+ _j_ (I [(I - PN 2 + e [Q - I I
atN x2 N ax N 2 uN ax Na uN-I+

- . . - -,-,, e- - .. - W e -r -.



-9-

In order to prove the convergence of this method we need a couple of a priori

estimates on its solution. To this end, we multiply (2.1) by uN

a 1 2 a i 3

at ( uN) +--T (5 u1 =

(2.2)

a 1 2 a a
uNd - N [(I - u + SuN -x - U -2II + IV,

and integrate over a 27r period: the integral of the second term on the left

'8." vanishes by periodicity, and after integration by parts for the second term on

the right we are left with

(2.3)

dt~d ilU N (.,t)11 2 + 6 f2 - U N(X,t)Q N 7x U N (Xt)dx f u N '-E (I-PN ) u Idx.
L2(x) 0 0

Using (1.7) and the fact that I - SN is orthogonal to our N-space, we find

that the right-hand side of (2.3) equals

v2Tr 2Tr

a 1 2 a 21 2
fUN [(I-PN) 7 u ]dx = -a- f u ]dx = -a- U ip(A N 7u

" o NlplNPI

and by the aliasing relation (1.6), this does not exceed

f fu N X[(IP N)7 uNIdx p- q N q~ K i.
N0 jp-4q+r =2N+1 l - Tp+q~rl=2N+1 p q r

In view of lp + q +rl 2N + 1, at least two of the three indices olI < N,

4qI<N and Hr < N are greater in absolute value than N and hence
7'

.

4' ^ ^

UNi N IPN- ippq < r l a IN '.V~.-V
s La.X'. .r



2 T1 2 4 llII
UN Nx (I-P N- UN]dx <P u pquI u(2N+1)-(p+q)

0 plp<q ;<Iql< N

N - N 
2  N 2

u q N N ±[Iu+(2N+l)_(p+q)I

- pl< I q<l N q I<
"~ ~ --<

_. NN

Consequently, since Q(p) = O(q) - 1 for lpI,lql > , the expression on

the right of (2.3) can be upper bounded by

(2.4a)f UN xI-PN)- u dx < 1/2 -IIQ (,t)11 2  IIU ' 2
P .. N - L (x) L (X)

* Noreover, since 0 < ;(k) < I we have for the second term on the left of

(2.3)

( F U(X,t)0 3 uN(x,t)dx

C £ k 2 0(k)uk(t)l2 > F-110 u , t)1l2
k-<N *k [kN L ( x)

Inserting this together with (2.4a) into (2.3) we end up with

I d " 4u t 1.iip

+ -[Fu (.u t)IKl ]y110 N , 2) 11 .~< 0.
S' 2" dt , L2+x) N 2

L (x) L (x) L (x)

:'- Thus, is 1long is

w,, tE 11 F

- 4K' .

(iX)

e%. 

17 N 
.*.~ a ~ ... 

* **- 
'

• '%°V

-5:N IN



(2.7) d-~ IIU (- 't)11 2 + CIIQN a** uN0*t) 2 <~ 0.
T N L 2(X) N UN L 2(X)

In particular, (2.7) implies that for u N (X,t) k I Nu k t)e1 ' we have

our first L2-type a'priori estimate

(2.8) 1iuN(-,t)ii 2  12 <kt) E 2, E0 = uN*t)i2 <Cos
L 2(x)fkJ<N I ~) -0Iu('~~lL 2(X) C t0*

Hence (2.6), (2.7) and consequently (2.8) prevail for all time provided (2.6)

is valid at t = 0, i.e., we require that in the pseudospectral case where a

=1I we shall have

(2.9) E(N) > 8E 0 .N- /2;

* indeed, Assumption II tells us that this requirement is fulfilled, at least

for sufficiently large N, for

(2.10) E > Gonst. N2g > 8.E 1 a

Furthermore, temporal integration of (2.7) then gives us the second a-priori

estimate

(2.11) F-110 a u 112  C f k 2!QJk^ (t)12 dt < j2 j K Const
J NL 2(x t) t m<IkI<N k-0 0 - 0'

boc_

....4 . I~ I -
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3. THE DECAY RATE OF THE FOURIER COEFFICIENTS

Our Fourier approximation (2.1)

(3 .1) a U + 1 ( 2 a I ua a a U( -t *- (u uN) = x [(N - PN- N UN] + E [ -N uN],

consists of two kinds of errors. The first term, I = [(I - P) - u

ax N 2 N'

represents the discretization error, which includes spectral truncation

error S 1 2
axerrors [(I - S uN ]  as well as additional aliasing errors

a x 1
-a--- [AN .T u] in the pseudospectral case. In this section, we borrow from

Kreiss [I11, in order to show that due to the second error term of spectral

vanishing viscosity, 11 = a F [ u there is spectral decay of the
ax N ax N

Fourier coefficients Iuk(t)! jkl > I N and therefore, that the discretiza-

tion error is spectrally small.

We begin by taking the I - S2k projection of (1.9): for k > m we have

by Assumption I, (I - S2k)QN = I - S2k' and hence

(3~~ 2) =t (lEk;W+(_ )I [2_

(3.2) (ISk)u[ u UN m < k < N.

* Multiplying by (I - 52k)uN and integrating by parts over a 2n-period, we

find that

I d II(I - ) (' t)1 2

Id 2k,2k - 22kkU NNk.u tN

n L (x)

.i
5%;

• 5 ,% -.-
4 .

' _ '%,. ,.w ¢ -_'' ' " ' " % ''.' ' ,'""',','.,, -. "# .".,-."¢ .4'.. ," " 
"

,• " . , " ." . ," .
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The first integral on the right does not exceed

2 f (I-S2k) x UN" (I 2k)PNuNdx <

0
(3.4)

< - II(I-S UN(Ot) 2 l(I-S 2k)PNu2N(''t)I2
L (x) L(x)

In order to estimate the second term of the last product, we will make use of

the following lemma whose proof is postponed to the end of this section.

Lemma 3. 1: Let fN- f (x) and N- N(x) be a couple of N-
N N N=N

trigonometric polynomials. Then, for any 0 < 2k < N we have

II(I-S2k)PN(fNgN)IIL 2(x) <

-,% (3.5)

<2 iiaa
< N --- 2 II(ISk). 9N1 2 + ll90 2 "Il(I-Sk),;x fN ]2

A< L(x) L2(x) L (x) L2(x)

,* Lemma 3.1 with fN( -) = gN(.) = UN(.,t) implies
N N N

(3.6)(ISpk Nu2 (. t)II < 4 2 (t)III(I-S UN(,t)II
2k N N L(2-(x) N L (x) k N t 2(x)

Equipped with (3.4), (3.6), and (2.8) we return to (3.3) to find that

I Id ) i2

(3.7) II(I-S2k)uN( . ,t)II 22 < - nil(l-S2k )I- uN(,t) 2 +
L (x) xL (x)

+ 2EO.( - S2k) uN (.,t)l L
2 ( - Sk) x_ uN(*'t)IL 2 '

II
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which brings us to

Theorem 3.2. For any integer s > 0 there exists a constant Cs =

Const(s,E0 ), such that for sufficiently large N, N > 2S.4m, we have

(3.8) 1l(I - SN)uN(. ,t)1ii2 < C [( 1 )s + (I + -i_)-(s+1) -e4S-N2t).
TL(x) S /N eN

Proof: Let Ek(t) abbreviates the quantity

(3.9) E k(t) E 11(I - Sk)UN(.,t) 2 .klL2 (x)

0

In view of the inverse inequalities

2kE2 k(t) < 11(I - S2k) '- UN(-,t) NE 2k(t),

% Wx

it follows from (3.7) that Ek(t) satisfy

2 2E0 .N
2

(3.10) d E 2k(t) < -4ek E A(t) + Ek(t), m < k < N..dt 2k - 2k -
f.

- Temporal integration yields that for any 0 < to < t we have

2E 0N 2  t 2 -4k 2 (t-t
S.0 -4sk (t--r) 0p: (3.11) E2 k(t) < f e Ek ()dT + e -E2k(tO)/k T--t

,,'. -and therefore

ON -4k 2 (t-t0 )
•(3.12) E A(t) < 2 max Ek() + e .E2k(tO).

2s/k.k to<tt



-15-

The a'priori estimate (2.8) implies that

max E 2k(T) < max E 0(T) < E01

S0<-r<t k O<<t

and in view of (3.12) we have

E0 N2  20 _4ck~t

(3 .13 )2k E 2k(t) < E0 + e *E0  k > m.

2e" k2

%t

SIf we choose t in (3.12) we find that
2

E *N2  20 ~2ek t.
(3.14) E (t) < 0 max + e .E(t) k > m,

2k - .2 E2(k)

and following Kreiss [1], we can use this to improve our estimate (3.13).

Namely, for k > 2m we can use (3 .13 )k to upper bound the terms max Ek(T)
T

and E2k(t) on the right of (3.14), and obtain the improved bound

8E0.N 2 2 8E0N 2

Emk(t) < (2--k) • E0 + (I + --. k e-k 2 t.E09 k > 2m.

Now we can repeat this process, and by induction we obtain that for k > 2S m

we have

we e 8SE .N2 s+1 8SE 0N 2 s 24-s+l.ek2t
(3.15) E 2k(t) k2 . 0 + + . "E0*

Verification of the induction step is left to the Appendix. Finally, (3.15)

implies that for sufficiently large k = N > 2S'm, we have
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1(1 - SN )u (-,t)l 9 = E (t) <
L (x) -

,,2

32.8 .E s+l 32.8 E s -(s+l) 2
0 < ( I " +  + _ . 4 cN t.

c/VN eVN0

and 3.8 follows.

Our parametrization in (1.14),(1.15) implies that for sufficiently

large N we have
'.tN

N~2 - 2 a
• tsl 2 NN3/2-, 0<2

4(s+1).gN2t > Const. 4s+ll t > N t 0 < U <

4as well as

I < Const. - < 1 0 < y < -2a,
N-(7 -2) - NY
N

and Theorem 3.2 tells us that

*or11ary 3.3t For any integer s > 0 there exists a constant Cs

such that

(3.16) N1 U N ~(-,t)1 2, < Cs.(N - s + e-N3/2"t).
-i- L 2xx) -

Corollary 3.3 indicates the spectral decay of the Fourier coefficients

!u(k)! with wavenumbers Jkl > N, which in turn Implies a similar decay

for the discretization error, T, on the right of (3.1). For the latter we

9W,

or -P/
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have

(2 12 2 2 12 2

(3.17) (I-P )  U(.,t), 2 ,,(I-SN) UN(.,t)i,2 + a2IAN 1 UN(.,t),I
L (x) L (x) L (x)

The Fourier coefficients of the two expressions on the right are given

respectively by

((I [ 2SN 1U ,) - E u (t)u (t), jkj > N,2 N *,t))k p+q-k=O

(A (-'t)) U(t)U (t), 1k! < N.
-p+q-k = 2N+I --

In both cases, either PI1 > N or 1q! > N hence each one of these

coefficients can be upper bounded in a standard fashion to yield

iiiII(I-SN)7 x).,)I2  2 1 2x)2

u N(t) N +a IIA u (.,t)12 <

N7 N L2(x) N7 N L 2(x)

(I+a-'[ I[ ju (0)12]'[ [ lU (t)12] < 4E2 .NI(I-S )uN('t)I'
q (1+ 2 )u N.~ 2

N I <lkI <2N lq_<N q N p - N L 2 (x)

and by (3.17) this is the same as

( 111(1-P U 2.(,t)l < 2E0.N .1l(l - S0)u (.,t)
N 2 N L2 (x) N N' L x

' -L2(x) -- h"(x)

Corollary 3.3 together with 3.18 show that due to the presence of the spectral

viscosity term IT on the right of (2.1), the discretization error I decays to

zero at a spectral rate independently whether the underlying solution Is

smooth or not. We state this as

IJe

'p06% A k.L 0 .
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Corollary 3.4: For any integer s > 0 there exists a constant C-- S

such that for sufficiently large N we have

*1'*, 1- _N
3/2. )

(3.19) UT =[-P ) (* t)lI < C ./- "(N- s + e s > 0.
N? N L 2 ()- s

We close this section with the promised

Proof (of Lemma 3.1): Starting with the identity

fN f (1-S )g + (I-S )f S g + S fN*Sk9

N k N k N kN k NkN

. and subtracting from this (I - )PN[SkfNSk (I - )[SkfNSk 0,

we can write

' '" (I-. 2k )P N(f Ng) (1-S 2k )p N[f N (-S k)g N+(I-S k)fN, SkgN .

The quantity inside the right brackets is a trigonometric polynomial of degree

< 2N and hence, by Parseval relation, its L 2 (x) norm dominates the L2(x)

norm of its PN projection, i.e.,

II(T-s2k )PN(fNgN) 2 ( < lipN ' ' 2 (x) <

(3.20)

< i -S,)g,+ (i-f ,)f(, s 11g 2
N k %I k k NL 2(x)

The norm on the right of (3.20) Is upper bounded by

Vo .
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i1 f N(I-Sk )g N+(I-S k)fNkgNL 2(x) <

(3.21)

"fN" 2 11 .1 kNIs 11  + 1N1 g (x 1(I-Sk)f .
L (x) L ( L- (x) L (x)

Finally, for hN equals either fN or g. we have

1(I-Sk )h ILN ( < A IhPI <

(3.2) L x) - Tp>k

< 1 1 1/2 1 2 1 2 11/2 < 2 IL2

- Ip>k p IP >kP Pk kax N L 2 (x)

and (3.5) follows from (3.20), (3.21), and (3.22).

4. L:" A PRIORI ESTIMATE

The classical energy method can be used to show that the solution of

(2.1) remains uniformly bounded during a small finite time. The method

reflects the fact that for sufficiently smooth initial data, say with

u (x,t=o) which are L2-bounded, the process of shock formation takes a

finite time, during which -u (xt) remains uniformly bounded and a
ax N

couple of Sobolev norms could be a'priori estimated during that time.

For a brief initial time intervals, we can do better with regard to the

smoothness of th- initial data, as told by

Lema 4.1: Consider the Fourier approximation (1.11) - (1.14) with

initial data tN(X,t=O) such that Assumption TIT holds, i.e.,
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(4.1) U k Uk(t=n) < Const n .

* Then for t < - we have

' fu( ~l(4.2) u 't If < 2Ukt=n) ,  t < ICnt.

N Lt) <N k 8Const * N

Proof: The Fourier transform of (1.9) reads

(4.3)

d k(t) + iku u (t)u (t + a u (u (] =  Ek2Q(k)U
S'p+q=k P q lp+q-kl=2N+l P qk

Multiply the real (imaginary) part of this by sgn(Reu k(t)) (respectively,

s7n(Imuk(t))) and sum over all k's: since the right-hand side is negative we

obtain after summing both parts

du lUk(t) _< (I + al).2N. u (t). Uk- (t)l <

! ~Nk < p<Nk

<. 4N lUk t) I )2.
II

9i < 4N ( t __t) I )

Intec.ration In time yields

l (' t)L < luk(t)l I "Uk(t=O)'

L'(,) -- , Ik <N - Nt. l ( t = 0 ) j k N-'% k <N k

I-,. ind (4.2) follows.

ed
)66



To obtain L~ bound for later time, we shall carefully iterate on

the LPx noms ofp -ithe LP~) nrmsof uN(x, t). To this end, we multiply (2.1) by uNU and integrate over the 2ir-period, obtaining

dt11 uN t)ip~ + uN I(: ~x,t)ix=~ 2  Z NExn xulx

f N ax N 2 u N d+ pf N x N' -

VBy Corollary 3.4, the discretization error is negligibly small: using (3.19)

andthefac tht ( - 12 is a trigonometric polynomial of degree
N 2 N

< 2N, we have for any s>O0

7-X ) NLp(x) -

3/2
.1a M 1 2 <CN2. N-se -N *t

/7N.ii.- (T-N)i2 uN(.,t)ll 2 < C5  (N +
L (x)

Therefore, by Holder inequality, the first integral on the right of (4.5) does

not exceed

P- T p , a [ 1 P )Iu 2 Jd -l -1 (- t l 1a ( - )1 2 . t ]<

(4.7)3/

1K *N(t 1r C (N 2-s +N 2 eN *t +1

-IlN. Lp(x) p q

The second integral on the right of (4.5), with ON I RM, equals

2TP13a fn 2ru-2 auN) 2d - T Pp1 3 2

0 0 0 ax



The first term on the right hand side is negative for any even integer

p > "* for the second term we use Holder inequality as before, obtaining

(4.Fa) pF- r , _-

p0 axLW ax Lp(X)

Now, since R mu N R M(x)*uN(x~t) is a trigonometric polynomial of degree

< 2m, (consult ( 112)), we can estimate the L(x) norm of its derivatives

as follows [5, Chapter X1

2
11 ax 2 R mh N ter we < (2m) nqum ty N beLore, o n(x) <

(4..b)

< 4m IP ()dx pll UN( t)ll
S- - L (X) L(x)

Using (4.8a) and (4.8b) we conclude that the second integral on the right of

(4.5) is upper bounded by

(4. ) -2 TR U N )- 1  2 ) .1 a( d p E .)*UN ( ) II I< -' )

N- x N ax N LN () N (x)

Me recall that according to our parametrization (1.15), Em2.1IR m(.)I[ < ~

-- LP(x)

Pence, equipped with (4.7) and (4.9) we return to (4.5) to find that

*. -Id a4. m

,,p (4 9) p 1 u p  - [ONI P( T I UN~ d 't 11I (. II I "lU (. t ll

. L X) L

plu (. , P3/2

or, after division by the common factor of ? ,c

LP~px)-

- 9 -N3 1
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L A- 011 < 4a.11U (.,t)i + C .(N +S+N e *
dt , t L(x) -  N LP(x) S

Finally, we integrate in time obtaining by Gronwal l's inoqualitv thlt f r

any 0<t 0 t,

(430 3/24a(t-t n ) - "

1Iu (, t)I1 < e .[IIU (.,t )II + C .(N (t-t )+ e

LP(x)-  
LP(x) s

gLettin p even tends to infinity, then (4.10) with t0  tO(\;) _ I 4

n 0 RConst n N

gives us

2-s - Const. \)

(4.11) lIu N( t)II < e iuN(.t 4at (N t + V t. e
L (x) - L (x) s

and together with Lemma 4.1 we conclude with the desired L bound, namely,

Theorem 4.2: Consider the Fourier approximation (1.11)-(1.14). Then for

any s > 0 there exist constants a > 0 and C such that
5

(4.12)
4o t - Cons t . r)Iu,.(.,t). < e a .[4. lu (t:O)l + Cs+g.( N  s t + -T e ]

L t(x)-  lk <N" <

Remarks: 1. We observe that the exponential time growth in (4.12) does

not exceed 4 a where a - Em -- R (-)II < Const.
m L (x) -



The : nriri LP(x) estimate derived in (4.10) is vl id for irbi trirv I.2 -

.%,, n2 tial dit:. We note, however, that the resulting I hound in such

I.,e s not uniform with respect to the initial time to. That is, with arbi-

trirv L-bounded initial data, the solution llu (-,t)l may still grow
L(x)

Sike ( )-. The point made in Lemma 4.1 was that with slightly strengthened

reularitv assumption on the initial data

-. k k(t=0) < Const0 ,

*- this growth is bounded for a brief time interval of length -- , after which

the soectral viscosity becomes effective and guarantees the Lw bound later

~n

5. CONVERGENCE TO THE ENTROPY SOLUTION

Ue f ollow [31, using compensated compactness arguments to conclude that

. u,(x,t) converges to the entropy solution of (1.1), (1.2).

* Proof: (of Theorem 1.1). Consider the four terms on the right-hand side

"f (.1) and (2.2). 'sing (3.18) together with (2.11) along the lines of [3,L Lemma 3.11, we find that the term I satisfies

K¢.',

-'-"I" I[ fa (1-PN)- 2 U(.,tllH ( <t

2 N o( .(X t)

12 1
< i(I-PN)-UN(. , t)1 2 < 4F 0 J - n.

L (xt) N+wt I ocI Also, by the a'priori estimate (2.11) we have

%- % %



LOC

<I
x N N -N

Ii1  (x,t )

* ( 5*. 2

J)

'11m ; ill view of (S. ) ,nd (S.)), tht eorms I .ind [I ol t .he rfs hI t of (2.I) he-

1 lOtt Ito th le t'colip.ict of 11- (xI).in

3 - 3
Next wo' note thait sIn ct, 0ON + Rm 1 we' hawe

V,: iL/ IIN11  2< QN 11x 1I + / I-x p (Rm N)ll 9-

1 1 o(. 1 oc

- lhe first term on theo right Is hounded by .10; the second one--hetnlm the

ier i vat iv of- :i trig onometri c pol ynomial of deg ree 2m, does not exceed

m I I < Const. Conseqientl Y ,
T, (x , t)

(3) If i 1 2 <Const.(5.3 V II U I! (x t)

1 c '

%

Eqipped with (5 3) we now turn to consider the right-hand side of (2 2) For %

the third tt.rm in (2.2),

a ) 2IT = uN  ( [( - P N N -

(5.4,1)

= 3 (I - P ) 1 N2 a (I - 1 u T I + TIT ,v

[br N 2 eN T N N 2mN t 2'

we hImve by Theorem 4.2 and the estimate(5)



1A ixNH x

% lot'

Ll I - u2  < <os.E

a ': 1 x u 1- P N )2 U 1 2 < 00s.4 n

Finallv, for the fourth term in (2.2),

c a a
N aN

~~-~ IVf s- + IV
a- N £x *- NUN N 2

we have hv (2.8) (2.11) and the uni form hound 1 n Theorem 4. .2,

(5.5b) I IVI (u nN uN 0t fU .tfli x

- dX N N~ N NT N

0.k%(,.5c) 111V 2 11 < EliO N'2 x +

L (x,t) T Xt
I oc - a Nl (t QINo \L xt

m ax (~) N XtIclo
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U-.

< J + V: .2m.E .J < Const.
-0C 0 0

Therefore, bv Murat's lemma, [41, the inequalities (5.4), (5.5) imply that the

terms IllI and IV are also in the compact of HlIo(X,t). In summary, we have

shown that the right hand sides of (2.1), (2.2) lie in the compact of

- H I (x,t), and, according to Theorem 4.2, that 11u (.,t)11 is bounded
loc 

N L'(x)

(in fact, 11UlN 1LP with p > 6 will do for our purpose). Hence we can

apply the div-curl lemma [4] to the left-hand sides of (2.1), (2.2) and obtain

that (a subsequence of) uN(xt) converges strongly in Lloc(Xt) to a weak

limit solution Tu(x,t).

Moreover, we claim that this limit is the entropy solution of (1.1). To

verify this claim we show that the right-hand side of (2.2), IIl + IV, tends

weakly to a negative measure. Indeed, by (5.4) and (5.5b) the terms III and

IV1  tend weakly to zero, and hence it is left to show that the term IV2,

SIVNN U- UN -(0N + R -a u U0 a Q+R = 1

2 -x u = N mT' NNTUN1 N

tends weakly to a negative measure. To this end we proceed as in [3, Section

4] and rewrite TV2  in the form

2-

- (5.6) IV9 = -E[Q a Ul -1 2 _ EmUa R + 3 a2 - (RmuN).QNUN

N N _ a(R uN).QNuN] ax m N

Denote the three terms on the right of (5.6) by IV2 1 , IV2 2 and IV2 3,

respectively. B~v (2.11), IV2 1  tends weakly to a negative measure

(5.7,) wlim [IVa - - [ 2 < 0.
2N0
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If we integrate the second term, IV22, against any C O  test function
0

.(x,t), we find

f f IV22 dxdt < f f I- °--x(Ru ). uNdxdt <
xt 

x t

< E, 1111 -1 . Wl---Rm u ,x. QN.1
- L O (X,t) m L2 (x,t) NUN L2  (xt)

L lolc tc
!I

and since RmuN is a trigonometric polynomial of degree < 2m, this is less

than

(5.7b) f f 4.IV dxdt < r2m-u 112 < Const 1 0.
x t L Lw (x,t) N L 22(X,t) " N N+w

oc 1 oc

Finally, for the third term

2 2
IV2 3  2 (R--m2 (RUN).QN(UN- ) + - (R nUN).QNu- IV2 3 1 + 'V2 3 2ax ax

we have

a2

(5.7c) iiiV 2 3 1  -7 (RmUN)QN(UN-U)II 1 <
ax L (X,t)-

loc

2
< E.4m 1IIRN"2Iu-l2 < Const. 11u U1I + 0,

m L lc(x,t) L lc(x,t)- loc X

* .and since 6 Rm u*0 u tends weakly to zero, so does the term TV 3 ,
mN N 22

(5.7d) wlim [TV2 3 2  - (R )QN u  0.
N+co ax
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From (5.7a) - (5.7d) we conclude that the term IV 2  in (5.6)--and therefore

that the right-hand side of (2.2), tends weakly to a negative measure. Thus,

by taking the weak limit of (2.2) we recover (1.2) for our limit solution

2
u(x,t). Consequently, the strong LuN(xt) u(Xt)

the unique entropy solution of (1.1) as asserted.

,

0.

w * r



._4

4%..

-30-

REFERENCES

9] H.-O. Kreiss, "Fourier expansions of the solutions of the Navier-Stokes

equations and their exponential decay rate," Center of Applied

.Mathematics, UCLA, 19R8.

[21 H.-O. Kreiss and J. Oliger, "Methods for the approximate solution of time

dependent problems," GARP Publ. No. 10, 1973.

[31 F. Tadmor, "The convergence of spectral methods for nonlinear conserva-

tion laws," SIAM J. Numer. Anal., to appear.

-4j L. Tartar, "Compensated compactness and applications to partial differen-

tial equations," in Research Notes in Mathematics 39, Nonlinear Analysis

and Mechanics, Heriot-Watt Symposium, Vol. 4 (R. J. Knonps, ed.), Pittman

Press (1975), pp. 136-211.

5mU

f51 A. Zygmund, Trigonometric Sqeries, Camhrldge University Press, 1968.

.4

4'.



-31-

APPENDIX

A. THE Ll-LOCARTTHMIC BOUND OF MONOTONE VISCOSITY KERNELSq

We consider symmetric viscosity kernels of the form

O(x) = Ik <2m Q(k)e ix+ 2?mjkj<N e k

with monotonically increasing Fourier coefficients. Then, the kernels which

correspond to Rm =I -QN' are symmetric polynomials of degree < 2m

(a.1) R~x W 2. R(k)coskx

whose Fourier coefficients are monotonically decreasing, compare (1.13),

(a.2) I > i(k) +> 0.

Such kernels satisfy Assumption IT above, as told by

Lema A.1: There exists a constant such that

(a3)lip (01ii < Const.logm.
1(x)

proof: The resnl t follIows I f we can show that R (x) is majorized bym

Const.m and Const. -r--7 for then we have

lIIIL~
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RR (-)Il K f Const.m-dx + f Const. dx <
L (x) - I <1-1T I -

(a.4) xK M .

<2 Const.m + 2-Const.log xI < Const . log m.

mm xm

Since 0 < R(k) K 1 we have

IRm(x)! <2 • Y R(k)I < 4m;
k <2m -.j

furthermore, summation by parts yields

I R(k).[sin(k + -f)x sn(k -)x <

ksfn(2)R 2xsfn k 2m_

< 4 + 1 IR(k+l) - R(k)I.Isin(k + f)xl,

and since R(k) are assumed to decrease monotonically

IR (X)1 < < Const. 1
SIsin(2-)I TT:

which completes the proof.

S..
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B. THE DECAY RATE OF THE FOURIER COEFFICIENTS-REVISITED

In Section 3, we concluded that the quantities

k(t)-E l(iSk)UN(., t)I , satisf for k > m, the recursive inequalityL'(x)

(3.14)

_____.___)-2ck't
(b.1) F (t) < o max F (T) + e .Ek (t ) .

~2k 2E:~k V - k t k-9t

in this section we complete the details for the solution of these recurrence

relitions, and obtain that for k > 2S. m we have

'-" 8~o. 2 s+l SoN2s_4s.k t

(b._) E2 k(t) < F "E0 + (I + )N k + 5.E,. -- '1.k 3 .k

i.e., (3.15) holds. For s = 0, (b.2) is reduced to (3.13); now assume that

(b.2) is valid for any k > 2Sm: in particular, for k > 2s+l.m we can

use (b.2) with k replaced by k k > 2s.m, and obtain that

Furthermre k(T < 2-- - + (I+ -~' 2 *e FE0.

Futemrwe have ---

8a ( N 2 s+ l S+N 2 s _S
(.4) 2k() F 0  + (I + + e e 0

"" /-k-t kk k2 "' k'

U'sing (b.3) and (b.4) to upper bound the right hand side of (b.1) we find

m I I



-34-

Eo-N2 8 Eo-N s+l
E k(t) < - E0 +
2k - 2-k. k2 0-k-k2

EoN E s 4 Sk 2

0 (I + 2) Fe

SEoN2 s+2

2ek2 t 8 E0 N *Es~

5. c€/k.k

2 8 SEN 2  -s 2

+ e .(I + 2 E 4 k t

SlE N s+2
The first of the four terms on the right is less than -E

rg-kt k2 0

the sum of the remaining three terms does not exceed

S8 NS+EN2 s41 s 2
(I'k0 2  e.4e •. 0,

and hence for k > 2 s+Im + we have

8. 8Io. N 2 s+2 S+Eo.N 2 s+l - 2

E2k (t) < 2 -E 0 + (I + 0 -4-Sk t
_ Y /k.. k eV'"k

which completes the induction proof of (b.4).

6F
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